

1

Molecules of chemical elements				
Certin elements exist as 2-atom (diatomic) molecules:				
$H_2 N_2 O_2$	Cl ₂			
Some elements	form larger molecules: S ₈			
Some elements form 3-dimensional structures (crystals) as solids, but they are pure elements and the smallest self-contained building block remains the atom :				
e.g. Carbon (C)	GRAPHITE			
Montanuniversität leoben				

Chemical Bonding in Molecules (Overview)				
ls				
115				

12

me common anions and cations	Positive ions (cations)	Negative ions (anions)
	Ammonium (NH ₄ +)	Acetate (C ₂ H ₃ O ₂ -)
	Potassium (K ⁺)	Bromide (Br-)
	Copper(I) (Cu ⁺)	Chloride (Cl ⁻)
	Sodium (Na ⁺)	Chlorate (ClO ₃ -)
	Silver (Ag ⁺)	Cyanide (CN-)
	Hydrogen (H+)	Fluoride (F-)
		Hydride (H-)
110	Barium (Ba ²⁺)	Hydrogen carbonate (HCO ₃ -)
ON!!!	Lead(II) (Pb ²⁺)	or bicarbonate
CARIT	Calcium (Ca ²⁺)	Hydrogen sulphate (HSO ₄ ⁺)
	Chromium(II) (Cr ²⁺)	Hydroxide (OH-)
	Cobalt(II) (Co ²⁺)	Iodide (I-)
	Iron(II) (Fe ²⁺)	Nitrate (NO ₃ -)
	Copper(II) (Cu ²⁺)	Perchlorate (ClO ₄ -)
	Magnesium(II) (Mg ²⁺)	Permanganate (MnO ₄ -)
	Manganese(II) (Mn ²⁺)	
	Mercury(II) (Hg ²⁺)	Carbonate (CO ₃ ²⁻)
	Zinc (Zn ²⁺)	Chromate (CrO ₄ ²⁻)
	Tin(II) (Sn ²⁺)	Oxide (O ²⁻)
		Peroxide (O ₂ ²⁻)
	Aluminium (Al ³⁺)	Sulphate (SO ₄ ²⁻)
	Iron(III) (Fe ³⁺)	Sulphide (S ²⁻)
	Chromium(III) (Cr ³⁺)	Sulphite (SO ₃ ²⁻)
		Phosphate (PO ₄ ³⁻)

Chemical Nomenclature - Anions

	Latin root + suffix -ide	1	
	Fluorine	F ⁻	- Fluoride
	Chlorine	Cl-	- Chloride
	Bromine	Br⁻	- Bromide
	Iodine	ŀ	- lodide
	Carbon	C ₂ ²⁻ ; C ₃ ⁴⁻ ; C ⁴⁻ (z.B.: CaC ₂)	- Carbide
	Silicon	Si ⁴⁻	- Silicide
	Nitrogen	N ³⁻	- Nitride
	Phosphor	P ³⁻	- Phosphide
	Sulphur	S ²⁻	- Sulphide
	Oxygen	O ²⁻	- Oxide
Пмо	NTANUNIVERSITÄT LEOBEN		

Chemic	Chemical Nomenclature – Molecular anions				
Systematic names Maximum number of	for molecular anion oxygens: latin roo	s with oxygen : ot + suffix -ate			
Carbon	CO ₃ ²⁻	- Carbonate			
Nitrogen	NO ₃ -	- Nitrate			
Phosphorus	PO4 ³⁻	- Phosphate			
Sulphur	SO4 ²⁻	- Sulphate			
Montanuniversität leoben	Montanuniversität leoben				

Chemical	Nomen	clature – Molecular anions
Systematic names fo	r molecula	r anions with oxygen :
Maximum number of ox	vgens:	latin root + suffix -ate
One oxygen atom fewer	•	latin root + suffix -ite
Carbon	CO ₃ ²⁻	- Carbonate
Nitrogen	NO ₃ -	- Nitrate
	NO ₂ ⁻	- Nitrite
Phosphorus	PO4 ³⁻	- Phosphate
Sulphur	SO₄ ²⁻	- Sulphate
•	s0- ²⁻	- Sulphite

io	nic solid.
La ga	attice enthalpy is released when distant positive and negative ions, which are in the aseous state, combine to form a crystal:
	$M^+(g) + X^-(g) \rightleftharpoons MX(s) \qquad \Delta H^0_{lattice} < 0 *$
	When an ionic bond is broken down into a gas composed of ions, the supply of this energy is required
	The stronger the bond in the solid, the greater the amount of energy required to break the bond and form the gas
	* Here, we follow the definition from Mortimer

Lattice Enthalpy						
A strong bond in solids:						
≻ le	ads to high	lattice enthalpi	es			
≻ ca	auses high m	nelting and boili	ing points			
	Salt	- ΔH ⁰ _{lattice} Lattice enthalpy	Melting point	Boiling point		
		kJ/mol	°C	°C		
	NaCl	780	801	1413		
	LiF		842	1676		
	MgCl ₂		708	1412		
	MgO	3925	2800	3600		
	Al ₂ O ₃	13000	2015	2980		
Montanuniversität leobe						

	Interactions Between lons				
	The strength of the interaction between ions				
	decreases with the size of the ions				
	Increases wi	th the value of th	le charge		
	Name	Formula	lonic radius of monovalent alkali metal cations X ⁺ in pm	- ΔΗ ⁰ _{lattice} Lattice enthalpy in kJ per mol	
	Lithium fluoride	LiF	74	1039	
	Natrium fluoride	NaF	102	920	
	Kalium fluoride	KF	138	816	
	Rubidium fluoride	RbF	149	780	
	Caesium fluoride	CsF	170	749	
	ÍT LEOBEN				
MONTANUNIVERSITA	AT LEOBEN				

A structural formula is used to represent atoms in molecules and illustrates						
the structu	re of the mole	cules				
	Condensed Structural Formula	Lewis Structure	Valence Structural Formula	Wedge & dash projection	Skeletal Formula	
Methane (CH ₄)	CH4	н:: :: ::	H HCH HH H	H H∕C∵"H H	Does not exist	
Propane (C ₃ H ₈)	CH ₃ CH ₂ CH ₃	ннн н:С:С:С:н нн н	H H H H-C-C-C-H H H H		\checkmark	
Acetic acid $(C_2H_4O_2)$	CH₃COOH	H:C: H:C: H:C: H:C: H:C: H:C: H: H:C: H: H: H: H: H: H: H: H: H: H: H: H: H:	H-C-C H-C-C-D-H	H H H H H H H	С	
Water (H ₂ O)	H ₂ O	н.:	H0 _H	H_O_H	Does not exist	

Chen	nical Nomenclature		
<mark>Generally:</mark> Names are fo ions	ormed as if the compound were made up of		
Advantage: S	Advantage: Simplicity ©		
Disadvantage consists of ic	Disadvantage: one does not know whether compound really consists of ions or not ⊗		
Examples:	Examples: Sulphur dioxide (SO ₂) – covalent bond Calcium oxide (CaO) – ionic bond		
Montanuniversität leoben			

Examples of Nomenclature for Simple Compounds (Nomenclature in Organic Chemistry: Chemistry 2 VU)

1. In the case of binary compounds, the metal name is given first (NH4+ means ammonium), then the designation of the (non-metal) anion.

2. In the case of binary covalent compounds, the element with the positive oxidation number is named first (electropositive component).

3. The suffix nonmetal atom or ion of binary compounds with a negative oxidation number ends in -ide.

4. The ending -ide is also used for anions such as B. CN^- = cyanide; OH^- = hydroxide; $O_2^{2^-}$ = -peroxide; NH_2^- = -amide or N_3^- = -azide.

5. If a cation (metal) exists in different oxidation states, the oxidation number is placed after the cation designation as a Roman numeral. The alkaline-(I) and alkaline earth metals(II) as well as B(III), Al(III), Zn(II) and Cd(II) have only one oxidation number.

6. If several elements of one type occur in covalent compounds, their number is indicated with Greek numerals: 1 = mono; 2 = di; 3 = tri; 4 = tetra; 5 = penta; 6 = hexa; 7 = hepta; 8 = octa; 9 = nona; 10 = deca; 11 = undeca; 12 = dodeca

MONTANUNIVERSITÄT LEOBEN

