Further examples:

1. You dissolve 8,00 g of solid sodium hydroxide NaOH in 0,500 kg of water. The density of the resulting solution is $\rho = 1,05$ g mL⁻¹.

Calculate

- a) The molar concentration c of NaOH in the solution.
- b) The molality b of NaOH in the solution.
- c) The mass fraction w of H_2O in the solution.
- d) The molar fraction x of Na⁺ in the solution
- 2. You dissolve 10,00 g of solid calcium chloride in 0,600 kg of water. The density of the resulting solution is $\rho = 1,03$ g mL⁻¹.

Calculate

- a) The molar concentration c of CaCl₂ in the solution.
- b) The molarity b of CaCl₂ in the solution.
- c) The mass fraction w of CaCl₂ in the solution.
- d) The molar fraction x of Cl⁻ in the solution
- 3. A NaCl solution contains NaCl with a mass fraction w = 0,060.

The density of the solution is 1,0389 g/mL.

- a) What is the molar concentration of NaCl in the solution?
- b) How much water do you have to add to 100 mL of the solution to get a solution with a mass fraction of w = 1%.
- 4. A solution contains 12,0 g nitric acid and 36,0 g water.

The density of the solution is 1,100 g/mL.

- a) What is the molar concentration of HNO₃ in the solution?
- b) What is the mass fraction of HNO₃ in the solution?
- 5. How many grams of NaCl do you need to dissolve in 100 mL of water in order to obtain a NaCl solution with w = 0.150. Water has a density of 1,000 kg/L. Note the significant digits in the result!
- 6. 0,500 L of an aqueous soulution with a density of 1,05 g/mL contain 11,1 g calcium chloride.
 - a) what is the molar concentration of CaCl₂?
 - b) what is the molar concentration of chloride ions?
 - c) what ist he mass fraction w of $CaCl_2$ in the solution?
 - d) How much water hast o be added to dilute the solution to a mass fraction of 1%?
- 7. To prepare a saturated KCl solution at 20°C, 34,35 g KCl must be dissolved in 100,0 g water. The density of this solution ρ_{20} = 1,174 g/mL. Calculate the molar concentration and the molality of this solution.

- 8. 10,0 g CoCl₂.2H₂O dissolved in alcohol and made up to 5,00.10² mL.
 - a) What is the concentration of Co²⁺ in the solution?
 - b) What is the concentration of Cl⁻ in the solution?
- 9. Calculate the molar concentration of the following solutions:
 - a) a) 29,22 g NaCl in 250 mL aqueous solution
 - b) $0,600 \text{ mol } H_2SO_4 \text{ in } 1,50 \text{ kg } H_2O \text{ total solultion}$ $\rho = 1,025\text{kg/L}, M_{H2SO4} = 98,079\text{g/mol}$
 - c) 25 % alcohol solution (mass fraction in w%) ρ = 0,96339 g/mL; M_{C2H5OH} = 46,07
- 10. Calculate the molality *b* of the following solutions:
 - a) 29,22g NaCl in 250 mL aqueous solution $M_{NaCl} = 58,44g/mol$; $\rho = 1,10 g/mL$
 - b) 0,600 mol H_2SO_4 in 1,50 kg H_2O aqueous solution $\rho = 1,025$ kg/L, $M_{H2SO4} = 98,079$ g/mol
 - c) 25,0 % alcohol solution (mass fraction in w%) ρ = 0,96339 g/mL; M_{C2H5OH} = 46,07
- 11. Calculate the molar fraction x of the following solutions:
 - a) 29,22g NaCl in 250 mL aqueous solution $M_{NaCl} = 58,44g/mol$; $\rho = 1,10$ g/mL; $M_{H2O} = 18,015$
 - b) $0,600 \text{ mol H}_2SO_4 \text{ in } 1,50 \text{ kg H}_2O \text{ aqueous solution}$ $\rho = 1,025 \text{kg/L}, M_{H2SO4} = 98,079 \text{g/mol}; M_{H2O} = 18,015$
 - c) 25,0 % alcohol solution (mass fraction in w%) $\rho = 0.96339 \text{ g/mL}; M_{C2H5OH} = 46,07; M_{H2O} = 18,015$
- 12. 97,1 g Potassium chromate are dissolved in 900,8 g water.

The density of the solution is 1,05 kg/L. Calculate the concentration of K₂CrO₄ as

- a) molar concentration c
- b) molality b
- c) mass fraction w
- d) molar fraction x
- 13. Concentrated (fuming) hydrochloric acid has a composition of w = 37% and a density at 20°C of 1.19 g/mL. Prepare 2 L of diluted hydrochloric acid with the molar concentration c = 2.00 mol/L. $M_{HCI} = 36.461$ g/mol.
 - a) How much hydrochloric acid do you need to use (in g)?
 - b) To what volume of HCl would this correspond?
 - c) How much water would you need to use? The density of hydrochloric acid @ 2mol/L is 1,03 g/mL

- 14. At 20°C, a saturated sodium chloride solution has a molar concentration of c=6.00 mol/L and a density of 1.18 g/mL
 - a) How much water in g must be added to 500,0 g NaCl in order to produce a saturated solution?
 - b) Calculate the mass fraction and the molar fraction of NaCl in this solution
 - c) How much water do you have to add to 1,00 L of this solution in order to produce a NaCl solution @ 0,100 mol/L?
- 15. 200,0 mL of a CaCl₂ solution with c= 1,50 mol/L and 300,0 mL of a NaCl solution with c= 3,00 mol/L are mixed. Calculate the following concentrations of the mixture in respect to:
 - a) Cl⁻- ions
 - b) Ca²⁺ ions
 - c) Na⁺ ions
- 16. A solution of hydrochloric acid with the mass fraction of w=10,0% has a density of 1,0474 g/mL at 20°C.
 - a) what ist he molar concentration c.
 - b) 0,500 L oft he solution above is diluted to 10,0 L total volume. What ist the new concentration? .
- 17. A maximum of 58 g HCl gas can be dissolved in 100,0 g water. The density of the resulting solution is 1,19 g/mL.
 - a) What is the molar concentration c of the resulting hydrochloric acid?
 - b) Using the solution above 50,0 L diluted hydrochloric acid should be produced with a molar concentration of $c_2 = 0.250$ mol/L. How much water and how much concentrated solution are needed?