Additional examples for exercise 5: Reaction equations and stoichiometry in reaction equations

Example 1:

Write down the chemical formulas for the following ionic compounds (salts):

- a) Magnesium sulfate
 Solution: MgSO₄
- b) Calcium chloride

Solution: CaCl₂

a) Potassium fluoride

Solution: KF

Example 2:

Balance the following reaction equations:

- a) Al $_{(s)}$ + Cl_{2 (g)} \rightarrow AlCl_{3 (s)} Solution: 2 Al $_{(s)}$ + 3 Cl_{2 (g)} \rightarrow 2 AlCl_{3 (s)}
- b) $Ca(OH)_{2 (aq)} + HBr_{(aq)} \rightarrow CaBr_{2 (aq)} + H_2O_{(I)}$ Solution: $Ca(OH)_{2 (aq)} + 2 HBr_{(aq)} \rightarrow CaBr_{2 (aq)} + 2 H_2O_{(I)}$
- a) $N_2O_5(s) + H_2O(l) \rightarrow HNO_3(l)$ Solution: $N_2O_5(s) + H_2O(l) \rightarrow 2 HNO_3(l)$
- b) $HCl_{(g)} + CaO_{(s)} \rightarrow CaCl_{2(s)} + H_2O_{(g)}$ Solution: 2 $HCl_{(g)} + CaO_{(s)} \rightarrow CaCl_{2(s)} + H_2O_{(g)}$

Example 3:

Write a complete chemical equation for the following reactions described in words:

a) Phosphine PH_{3 (g)} burns in air to form gaseous water and solid diphosphorus pentoxide.

Solution: 2 PH_{3 (g)} + 4 O_{2 (g)} \rightarrow P₂O_{5 (s)} + H₂O (g)

b) When ammonia gas NH₃ is passed over liquid, hot sodium (metallic), hydrogen is released and a solid of sodium amide NaNH₂ is formed.

Solution: 2 NH_{3 (g)} + 2 Na (s) \rightarrow H_{2 (g)} + 2 NaNH_{2 (s)}

c) Liquid phosphorus trichloride is added to water and reacts violently to form dissolved hydrochloric acid HCl and phosphoric acid H_3PO_4 .

Solution: $PCI_{3(I)} + H_2O_{(I)} \rightarrow H_3PO_{3(aq)} + 3 HCI_{(aq)}$

d) Solid potassium nitrate is heated and decomposes to solid potassium nitrite with the formation of oxygen gas.

Solution: 2 KNO_{3 (s)} \rightarrow 2 KNO_{2 (s)} + O_{2 (g)}

e) Hydrogen sulfide gas H₂S is passed over solid, hot iron(III) hydroxide, forming solid iron(III) sulfide and gaseous water.

Solution: 3 H₂S $_{(g)}$ + 2 Fe(OH)_{3 (s)} \rightarrow Fe₂S_{3 (s)} + 6 H₂O $_{(g)}$

Example 4:

Complete the following reaction equation (add stoichiometric factors!) and describe in words what happens during the reaction:

- a) Al(OH)_{3 (s)} + HNO_{3 (aq)} → _____(aq) + ____(I)
 Solution: Al(OH)_{3 (s)} + 3 HNO_{3 (aq)} → Al(NO₃)_{3 (aq)} + 3 H₂O (I)
 Solid aluminum hydroxide (alumina) is dissolved in nitric acid. This produces water and (aq) aluminum nitrate dissolved in it.
- b) $C_2H_5OH_{(I)} + O_{2(g)} \rightarrow ___(g) + ___(I)$

Solution: $C_2H_5OH_{(I)} + 3 O_{2 (g)} \rightarrow 2 CO_{2(g)} + 3 H_2O_{(I)}$ Ethanol (organic compound) oxidizes (combustion reaction) to form gaseous carbon dioxide and water.

c) $Cu(OH)_{2(s)} + HCI_{(aq)} \rightarrow ____(aq) + ___(I)$

Solution: $Cu(OH)_{2 (s)} + 2 HCI_{(aq)} \rightarrow CuCI_{2 (aq)} + 2 H_2O_{(I)}$ Solid copper hydroxide is dissolved in hydrochloric acid. This produces water and dissolved copper chloride.

Example 5:

Write a complete chemical equation for the following reactions described in words:

a) Boron sulfide B₂S_{3 (s)} reacts violently with water to form dissolved boric acid H₃BO₃ and hydrogen sulfide gas H₂S (hydrolysis = splitting of a chemical compound through reaction with water).

Solution: $B_2S_{3(s)} + 6 H_2O_{(I)} \rightarrow 2 H_3BO_{3(aq)} + 3 H_2S_{(g)}$

b) Metallic copper reacts with hot, concentrated sulfuric acid to form an aqueous solution of copper(II) sulfate and water, as well as gaseous sulfur dioxide.

Solution: Cu $_{(s)}$ + 2 H₂SO_{4 (I)} \rightarrow CuSO_{4 (s)} + 2 H₂O $_{(I)}$ + SO_{2 (g)}

Example 6:

Write a complete chemical equation for the following reactions described in words:

a) Gaseous cyanic acid HOCN is very unstable and is hydrolyzed in water to form ammonia and gaseous carbon dioxide.

Solution: HOCN (g) + H₂O (I) \rightarrow NH₃ (g) + CO₂ (g)

b) b) If solid mercury(II) nitrate is heated, it decomposes into solid mercury(II) oxide and into gaseous nitrogen dioxide and oxygen.

Solution: 2 Hg(NO₃)_{2 (s)} \rightarrow 2 HgO (s) + 4 NO_{2 (g)} + O_{2 (g)}

Example 7:

Complete the following reaction equation (add stoichiometric factors!) and describe in words what happens during the reaction:

- a) $C_4H_{10 (g)} + O_{2 (g)} \rightarrow \underline{\qquad}_{(g)} + \underline{\qquad}_{(l)}$ Solution: $2 C_4H_{10 (g)} + 13 O_{2 (g)} \rightarrow 8 CO_{2(g)} + 3 H_2O_{(l)}$ Butane oxidizes (combustion reaction) to gaseous carbon dioxide and water.
- b) AgNO_{3 (aq)} + H₂SO_{4 (aq)} \rightarrow _____(s) + ____(aq)

Solution: $2 \text{ AgNO}_{3 (aq)} + H_2\text{SO}_{4 (aq)} \rightarrow \text{Ag}_2\text{SO}_{4 (s)} + 2 \text{ HNO}_{3 (aq)}$ Precipitation reaction: 2 solutions, one silver nitrate solution and one sulfuric acid solution, are mixed together. Silver sulfate precipitates and nitric acid forms.

Example 8:

Complete the following reaction equation (add stoichiometric factors!) and describe the processes during the reaction in words:

a) $CaCl_{2(aq)} + Na_{3}PO_{4(aq)} \rightarrow ____(s) + ____(aq)$

Solution: $3 \text{ CaCl}_{2 (aq)} + 2 \text{ Na}_{3}\text{PO}_{4 (aq)} \rightarrow \text{Ca}_{3}(\text{PO}_{4})_{2 (s)} + 6 \text{ NaCl}_{(aq)}$ Precipitation reaction: 2 solutions, one calcium chloride solution and one sodium phosphate solution, are mixed together. Calcium phosphate precipitates out as a solid. The NaCl (common salt) ions (Na⁺, Cl⁻) remain dissolved.

Example 9:

5.38 g Li₃N is reacted with an arbitrary amount of water to form ammonia.

- a) Set up the reaction equation $Li_3N(s) + 3 H_2O(I) \rightarrow NH_3(g) + 3 LiOH(s)$
- b) What mass of ammonia is formed?

Molar mass: M_{Li3N} = 3*6.94 + 14.007 = 34.827 g/mol M_{NH3} = 14.007 + 3*1.008 = 17.031 g/mol

```
Amount of substance:

m_{Li3N} = 5.38 \text{ g} \rightarrow \text{that means } n_{Li3N} = m_{Li3N}/M_{Li3N} = 0.154478 \text{ mol } Li_3N

According to the reaction equation, 1 mol Li<sub>3</sub>N reacts to form 1 mol NH<sub>3</sub>. Consequently,

0.154478 mol Li<sub>3</sub>N reacts to form 0.154478 mol NH<sub>3</sub>.
```

Mass of ammonia after complete reaction: It forms 0.154478 mol NH₃. Therefore, 0.154478 mol * 17.031 g/mol = 2.63 g NH₃.

Example 10:

In the synthesis of ammonia, only 6.8 t of ammonia are produced from 45 t of nitrogen. Create the reaction equation and determine the yield.

Reaction equation: $N_2 + 3 H_2 \rightleftharpoons 2 NH_3$

Molar mass: M_{N2} = 2 * 14.007 = 28.014 g/mol M_{NH3} = 14.007 + 3 * 1.008 = 17.031 g/mol

Amount of substance: $m_{N2} = 45 t = 45 000 000 g \rightarrow therefore n_{N2} = m_{N2}/M_{N2} = 1 606 339.687 mol N_2$ $m_{NH3} = 6.8 \text{ t} = 6\ 800\ 000 \text{ g} \rightarrow \text{therefore } n_{NH3} = m_{NH3}/M_{NH3} = 399\ 271.916\ \text{mol}\ NH_3$

in theory, 1 606 339,687 mol N₂ should produce 3 212 679,374 mol NH₃. That is, 3 212 679.374 mol * 17.031 g/mol = 55 t NH₃. The yield is $m_{prakt.}/m_{theor.} = 6.8/55 = 12.36$ %.

Example 11:

When burning 22.00 g of propane C_3H_8 , 15.0 g of water was collected. What is the percentage of propane that has burned?

Reaction equation: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4 H_2O$

Molar mass: M_{C3H8} = 3 * 12.011 + 8 * 1.008 = 44.097 g/mol M_{H2O} = 2 * 1.008 + 15.999 = 18.015 g/mol

Amount of substance:

 $m_{H2O} = 15.0 \text{ g} \rightarrow \text{that is } n_{H2O} = m_{H2O}/M_{H2O} = 0.832639 \text{ mol } H_2O$ According to the reaction equation, 1 mol C₃H₈ reacts to 4 mol H₂O. Consequently, 0.20816 mol C₃H₈ (0.20816 mol * 44.097 g/mol = 9.17923 g) must theoretically be burned for 0.832639 mol H₂O.

Yield: m_{prakt., C3H8}/ m_{theor., C3H8} = 9.17923/22.00 = 41.7 %

Example 12:

A rock consists of 92% magnesium carbonate. Heating produces magnesium oxide and carbon dioxide. Write down the reaction equation. How many tons of magnesium oxide can you get by heating 5 tons of the rock?

Reaction equation: $MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$

Molar mass: MgCO₃ = 24.305 + 12.011 + 3 * 15.999 = 84.313 g/mol MgO = 24.305 + 15.999 = 40.304 g/mol

5 t of rock contains 92% magnesium carbonate, so 5 t of rock contains 5 t * 0.92 = 4.6 t of MgCO₃.

Amount of substance:

```
m_{MgCO3} = 4.6 t = 4\ 600\ 000g \rightarrow that is n_{MgCO3} = m_{MgCO3}/M_{MgCO3} = 54558.61\ mol\ MgCO_3
According to the reaction equation, 1 mol MgCO<sub>3</sub> reacts to form 1 mol MgO. Consequently, 54558.61
moles of MgCO<sub>3</sub> react to form 54558.61 moles of MgO.
```

```
Mass of magnesium oxide after complete reaction:
It forms 54558.61 mol MgO. Therefore, 54558.61 mol * 40.304 g/mol = 2.199 t MgO.
```

Example 13:

A strip of zinc metal weighing 2.00 grams is placed in an aqueous solution of 2.50 grams of silver nitrate.

a) What reaction takes place? (see exercise) $Zn + 2 AgNO_3 \rightarrow Zn(NO_3)_2 + 2 Ag$ b) Which reactant is limiting? (see exercise)

Molar mass: M_{Zn} = 65.380 g/mol M_{AgNO3} = 107.87 + 14.007 + 3 * 15.999 = 169.874 g/mol

Amount of substance: $M_{Zn} = 2.00 \text{ g} \rightarrow \text{that is } n_{Zn} = m_{Zn}/M_{Zn} = 0.03059 \text{ mol } Zn$ $M_{AgNO3} = 2.00 \text{ g} \rightarrow \text{that is } n_{AgNO3} = m_{AgNO3}/M_{AgNO3} = 0.014717 \text{ mol } AgNO_3$

0.0073585 Zn + 0.014717 AgNO₃ → 0.0073585 Zn(NO₃)₂ + 0.014717 Ag; AgNO₃ is limiting

 c) How many g of Ag are formed? Molar mass: M_{Ag} = 107.87 g/mol

0.014717 mol Ag are formed. That is 0.014717 mol * 107.87 g/mol = 1.59 g Ag.

d) How many g of $Zn(NO_3)_2$ are formed?

Molar mass: M_{Zn(NO3)2} = 65.380 + 2 * (14.007 + 3 * 15.999) = 189.388 g/mol

 $0.0073585 \text{ mol } Zn(NO_3)_2$ are formed. That is $0.0073585 \text{ mol } * 189.388 \text{ g/mol} = 1.39 \text{ g} Zn(NO_3)_2$.

- e) What is the mass of excess reactant left at the end of the reaction?
 0.0232315 mol of Zn remain. That is 0.0232315 mol * 65.380 g/mol = 1.52 g Zn.
- f) To what percentage has the reaction gone to completion?

0.48 g of the 2.00 g of Zn present react. The reaction has run to (0.48/2)*100 = 24% completion.

Example 14:

Consider the reaction of aluminum with elemental chlorine to form aluminum chloride. A mixture of 4.00 mol Al and 10.0 mol Cl_2 is reacted.

- a) Write down the reaction equation. (see exercise) $2 \operatorname{Al}(s) + 3 \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{AlCl}_3(s)$
- b) Which reactant is limiting? (see exercise) $4 \operatorname{Al}(s) + 6 \operatorname{Cl}_2(g) \rightarrow 4 \operatorname{AlCl}_3(s)$; 4 mol Al react with 6 mol Cl₂ -> Al is limiting.
- c) How many mol of AlCl₃ are formed? According to the reaction equation: 2 mol AlCl₃ are formed from 2 mol Al. Consequently, 4 mol AlCl₃ are formed from 4 mol Al.
- d) How many moles of excess reactant are there at the end of the reaction? For the reaction (see b) 6 mol Cl₂ are consumed. This leaves 4 moles of Cl₂.
- e) How many g of AlCl₃ are formed? Molar mass:

M_{AICI3} = 26.982 + 3 * 35.45 = 133.332 g/mol

It forms 4 mol AlCl₃. Therefore 4 mol * 133.332 g/mol = 533 g AlCl₃.